#400 Iowa-B (3-8)

avg: 42.04  •  sd: 136.71  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
193 Grinnell** Loss 0-13 554.63 Ignored Mar 30th Old Capitol Open 2024
49 Michigan State** Loss 0-13 1178.48 Ignored Mar 30th Old Capitol Open 2024
278 St Thomas** Loss 4-11 241.12 Ignored Mar 30th Old Capitol Open 2024
320 Washington University-B** Loss 5-12 51.34 Ignored Mar 30th Old Capitol Open 2024
368 Iowa State-B Loss 6-10 -95.5 Mar 31st Old Capitol Open 2024
414 Wisconsin-Milwaukee-B Win 11-3 135.23 Mar 31st Old Capitol Open 2024
368 Iowa State-B Loss 6-11 -146.03 Apr 13th North Central Dev Mens Conferences 2024
122 Minnesota-B** Loss 2-15 800.63 Ignored Apr 13th North Central Dev Mens Conferences 2024
299 Minnesota-C** Loss 5-15 118.6 Ignored Apr 13th North Central Dev Mens Conferences 2024
413 Marquette-B Win 14-7 163.04 Apr 14th North Central Dev Mens Conferences 2024
414 Wisconsin-Milwaukee-B Win 13-5 135.23 Apr 14th North Central Dev Mens Conferences 2024
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)