Probabilistic Bid Allocation

2024-25 Season

Bid Distribution    Step by Step Allocation    Team Statistics    FAQ

Allocation Breakdown

Region AC GL ME NE NC NW OV SC SE SW
Initial 2.083 0.986 2.712 1.003 5.184 1.659 1.008 0.020 5.345
Autos (all @ 1) 1.083 -0.014 1.712 0.003 4.184 0.659 0.008 -0.980 4.345
Southwest (@ 2) 1.083 -0.014 1.712 0.003 4.184 0.659 0.008 -0.980 3.345
Northwest (@ 2) 1.083 -0.014 1.712 0.003 3.184 0.659 0.008 -0.980 3.345
Southwest (@ 3) 1.083 -0.014 1.712 0.003 3.184 0.659 0.008 -0.980 2.345
Northwest (@ 3) 1.083 -0.014 1.712 0.003 2.184 0.659 0.008 -0.980 2.345
Southwest (@ 4) 1.083 -0.014 1.712 0.003 2.184 0.659 0.008 -0.980 1.345
Northwest (@ 4) 1.083 -0.014 1.712 0.003 1.184 0.659 0.008 -0.980 1.345
New England (@ 2) 1.083 -0.014 0.712 0.003 1.184 0.659 0.008 -0.980 1.345
Southwest (@ 5) 1.083 -0.014 0.712 0.003 1.184 0.659 0.008 -0.980 0.345
Northwest (@ 5) 1.083 -0.014 0.712 0.003 0.184 0.659 0.008 -0.980 0.345
Atlantic Coast (@ 2) 0.083 -0.014 0.712 0.003 0.184 0.659 0.008 -0.980 0.345
Total 2 1 2 1 5 1 1 1 5

Teams Ranked By Bid Fraction

Rank Team Bid Frac Rating Uncertainty High/Low Sim Record
1 British Columbia 1 2227.15 103.62 1/4 13-0
2 Tufts 1 2105.69 115.47 1/8 5-0
3 Carleton College 1 2063.74 90.24 1/6 8-2
4 Oregon 1 1890.52 50.48 2/9 11-3
5 Colorado 1 1801.8 56.85 3/13 10-3
6 California-Santa Cruz 1 1694.26 48.29 4/16 8-5
7 California-San Diego 1 1681.64 40.93 4/17 8-6
8 Northeastern 0.995 1706.36 109.54 3/24 4-1
9 Utah 0.994 1652.13 87.99 3/24 7-7
10 Washington 0.993 1660.5 88.17 4/28 2-2
11 Stanford 0.992 1596.71 67.4 5/24 6-6
12 North Carolina 0.986 1775.39 163.01 1/30 10-1
13 Michigan 0.986 1641.13 101.88 4/28 5-0
14 Virginia 0.958 1616.52 114.64 4/36 9-2
15 Cal Poly-SLO 0.955 1692.49 165.99 1/40 10-3
16 Brigham Young 0.826 1498.1 78.98 7/30 6-5
17 California-Davis 0.76 1463.79 51.03 11/28 5-9
18 Vermont 0.717 1490.87 110.56 6/35 3-2
19 Ohio State 0.668 1488.4 158.92 2/55 5-1
20 Pittsburgh 0.534 1433.47 93.31 7/40 3-2
21 Pennsylvania 0.457 1419.59 76.28 11/34 1-3
22 California-Santa Barbara 0.456 1418.77 98.65 8/42 7-5
23 Victoria 0.248 1383.51 61.23 14/35 4-10
24 UCLA 0.14 1319.44 95.9 11/50 7-11
25 Duke 0.129 1268.81 146.54 6/57 5-1
26 Western Washington 0.123 1335.1 77.95 14/40 3-5
27 California 0.042 1062.06 217.55 12/80 5-2
28 Georgia Tech 0.017 1137.69 138.67 13/64 6-0
29 Texas 0.008 1187.96 109.18 15/58 1-6
30 Georgetown 0.005 1282.35 53.75 19/43 4-2
31 William & Mary 0.005 1193.83 95.34 16/61 3-2
32 Georgia 0.003 1220.26 72.82 20/54 3-2
33 Wisconsin 0.003 1084.45 118.17 18/66 2-3
34 Rice 0 1416.42 93.11 7/37 5-0
35 Carleton College-Eclipse 0 1272.76 89.42 14/49 10-3
36 Trinity 0 1265.78 89.36 13/48 4-2
37 Minnesota 0 1195.72 50.19 24/44 2-3
38 Whitman 0 1156.96 137.52 14/68 5-2
39 South Carolina 0 1096.49 107.06 21/63 2-3
40 Kenyon 0 1082.36 177.32 15/72 6-0
41 Tulane 0 1072.02 101.98 22/64 3-2
42 Oregon State 0 1069.73 67.22 27/57 10-4
43 Colorado State 0 1059.23 111.27 21/69 0-7
44 California-Irvine 0 1048.33 118.99 22/68 9-4
45 British Columbia-B 0 1046.09 108.02 24/65 4-3
46 Appalachian State 0 1044.53 85.08 28/62 4-6
47 James Madison 0 1037.86 114.7 23/67 3-3
48 Southern California 0 1024.85 71.75 31/60 5-8
49 Liberty 0 1017.03 100.18 26/68 7-4
50 Portland 0 1004.07 87.67 29/63 8-5
51 Vanderbilt 0 995.91 45.27 35/58 2-1
52 Florida 0 984.02 96.77 25/69 6-5
53 Santa Clara 0 973.55 90.28 30/65 9-2
54 North Carolina State 0 965.2 77.69 32/66 5-6
55 Colorado College 0 896.64 125.51 27/74 3-4
56 San Diego State 0 891.77 126.46 25/78 6-0
57 Lewis & Clark 0 880.11 102.28 29/72 4-3
58 Penn State 0 865.19 109.25 32/79 3-3
59 Texas A&M 0 796.26 75.39 39/73 2-4
60 Alabama 0 794.1 27.07 53/66 0-4
61 Central Florida 0 787.98 114.47 38/79 4-2
62 Case Western Reserve 0 783.26 125.68 38/83 1-4
63 Denver 0 774.31 116.81 38/80 4-2
64 Grand Canyon 0 737.18 100.56 45/85 5-1
65 Texas State 0 697.77 17.01 61/71 0-2
66 Cedarville 0 691.55 109.26 46/87 5-1
67 Davenport 0 665.49 59.72 57/78 8-1
68 Northwestern 0 633.41 162.59 39/91 1-4
69 Alabama-Huntsville 0 630.53 211.85 37/97 1-3
70 Northern Arizona 0 575.1 125.6 48/94 2-4
71 Emory 0 558.25 120.18 48/92 2-4
72 Arizona State 0 550.62 118.7 53/90 8-5
73 Occidental 0 537.05 56.75 61/84 4-2
74 Cal Poly-SLO-B 0 518.91 69.09 64/88 3-7
75 California-San Diego-B 0 500.22 152.24 43/98 4-5
76 Claremont 0 491.32 47.92 68/86 1-6
77 Texas-B 0 490.78 118.26 56/92 0-4
78 Wake Forest 0 487.17 100.68 58/91 3-3
79 Miami (Florida) 0 483.3 68.83 61/88 5-3
80 California-B 0 469.87 83.51 61/92 5-6
81 Florida State 0 458.09 55.62 67/88 3-3
82 Stanford-B 0 452.82 112.78 56/94 1-5
83 North Carolina-B 0 439.03 83.44 64/92 3-9
84 Tennessee 0 397.89 97.58 62/94 3-2
85 Puget Sound 0 327.83 65.68 74/94 0-7
86 Nevada-Reno 0 292.09 88.24 70/98 3-7
87 California-Davis-B 0 282.77 94.65 69/99 1-5
88 Chicago 0 277.34 92.85 70/97 1-1
89 Michigan-B 0 273.3 42.77 79/94 2-2
90 Arizona 0 261.67 62.26 78/95 4-8
91 Richmond 0 184.91 75.13 80/99 2-3
92 Florida Tech 0 155.16 0 88/96 1-1
93 Georgetown-B 0 95.52 85.09 84/101 1-5
94 Colorado-B 0 95.34 77.27 84/100 1-5
95 Marquette 0 52.35 6.57 92/100 0-2
96 UCLA-B 0 -29.04 126.85 83/104 3-4
97 Florida-B 0 -47.75 126.57 86/103 1-5
98 Virginia Tech 0 -51.99 134.4 79/103 1-4
99 Emory-B 0 -101.36 276.19 59/104 0-6
100 Georgia Tech-B 0 -167.25 143.63 87/104 1-5
101 Arizona-B 0 -289.35 150.01 89/104 0-6
102 Catholic 0 -294.12 189.65 84/104 0-5
103 Georgia-B 0 -451.17 218.03 91/104 0-6
104 California-San Diego-C 0 -935.05 443.52 77/104 0-7

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of its teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)